Uncertainty arising from sampling

S Ellison (LGC Limited)
M Ramsey (University of Sussex)

Introduction

• Does measurement uncertainty include sampling?
• How to estimate uncertainties from sampling
• Uncertainties from sampling in the food sector
Measurement uncertainty

ISO definition
“A parameter, associated with the result of a measurement, that characterises the dispersion of the values that could reasonably be attributed to the measurand”

22.7 ± 4.8 g

The part of the result after the ±

Does measurement uncertainty include sampling?

EURACHEM position
• If the measurand relates to a bulk material from which samples are taken for analysis, the uncertainty in the estimated value for the measurand must include the uncertainty arising from the sampling process

• If the result is reported on the sample ‘as received’ by the laboratory, only within-laboratory sub-sampling contributes to the uncertainty
Examples

- Measuring and reporting the amount of pesticide in a laboratory sample of capsicum (green peppers)
 - Little or no sampling/subsampling
 - Sampling is not part of the measurement process

- Reporting the average level of pesticide in the bulk container (consignment) from which the laboratory sample was taken
 - Sampling may greatly affect the reported result
 - Sampling uncertainty matters

Estimating sampling uncertainty
Different approaches to control of sampling

• Gy: Well respected, based on management and control to eliminate sampling uncertainties

• Sampling uncertainties quantified using replication
 – Ramsey et al
 – Eurachem Guide

• Applying modelling approaches to sampling uncertainty
 – Minkkinen et al

<table>
<thead>
<tr>
<th>Method #</th>
<th>Method description</th>
<th>Sampler s (People)</th>
<th>Protocol s</th>
<th>Component estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Duplicates</td>
<td>single</td>
<td>single</td>
<td>Yes No Yes No 1</td>
</tr>
<tr>
<td>2</td>
<td>Multiple protocols</td>
<td>single</td>
<td>multiple</td>
<td>between protocols Yes No 1</td>
</tr>
<tr>
<td>3</td>
<td>CTS</td>
<td>multiple</td>
<td>single</td>
<td>between samplers Yes Yes 2</td>
</tr>
<tr>
<td>4</td>
<td>SPT</td>
<td>multiple</td>
<td>multiple</td>
<td>between protocols +between samplers Yes Yes 2</td>
</tr>
</tbody>
</table>

CTS = Collaborative Trial in Sampling, and SPT = Sampling Proficiency Test.

Simplest Empirical method is ‘Duplicate Method’
Using the ‘duplicate method’
1) Separating sampling and analysis

Sampling target:
Portion of material, at a particular time, that the sample is intended to represent.

Using the ‘duplicate method’
2) Replicating sampling

.... to at least 8 sampling targets
Statistical Analysis for the duplicate method

- Fully nested, balanced 2-way layout
- Analysis of variance gives sampling and analytical variance
 - each corresponding to a relevant standard uncertainty contribution
- Robust analysis of variance (RANOVA) suggested for outlier-contaminated data

Example: Nitrate in lettuce (Eurachem Guide p 35ff)

20,000 lettuce heads

1 “sampling target”

每一个湾被采样

- Every bay sampled
- Decision for each bay
Example 1: Duplicate method

8 (or more) targets sampled in duplicate

Duplicate sampling arrangement

Example: Analysis

8 sampling targets
Sampled in duplicate
Each sample duplicate analysed in duplicate
Example: Results

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>S1A1</th>
<th>Uncertainty</th>
<th>x - U</th>
<th>x + U</th>
<th>Probabilistic Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>TARGET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>3898</td>
<td>639</td>
<td>3259</td>
<td>4537</td>
<td>Poss Cont</td>
</tr>
<tr>
<td>B</td>
<td>3910</td>
<td>641</td>
<td>3269</td>
<td>4551</td>
<td>Poss Cont</td>
</tr>
<tr>
<td>C</td>
<td>5708</td>
<td>936</td>
<td>4772</td>
<td>6644</td>
<td>Cont</td>
</tr>
<tr>
<td>D</td>
<td>5028</td>
<td>825</td>
<td>4203</td>
<td>5853</td>
<td>Prob Cont</td>
</tr>
<tr>
<td>E</td>
<td>4640</td>
<td>761</td>
<td>3879</td>
<td>5401</td>
<td>Prob Cont</td>
</tr>
<tr>
<td>F</td>
<td>5182</td>
<td>850</td>
<td>4332</td>
<td>6032</td>
<td>Prob Cont</td>
</tr>
<tr>
<td>G</td>
<td>3028</td>
<td>497</td>
<td>2531</td>
<td>3525</td>
<td>Uncont.</td>
</tr>
<tr>
<td>H</td>
<td>3966</td>
<td>650</td>
<td>3316</td>
<td>4616</td>
<td>Poss Cont</td>
</tr>
</tbody>
</table>

Example 1: Results

Robust ANOVA:
- $s_{samp} = 319.05 \text{ mg kg}^{-1}$
- $s_{anal} = 167.94 \text{ mg kg}^{-1}$
- $s_{meas} = \sqrt{(s_{samp}^2 + s_{anal}^2)} = 360.55 \text{ mg kg}^{-1}$

Classical ANOVA:
- $s_{samp} = 518.2$, $s_{anal} = 148.2$; $s_{meas} = 538.9 \text{ mg kg}^{-1}$
Sampling uncertainties in food analysis

Review of sampling uncertainties in foods: Overview

- Collate available data from literature
 - 23 sources identified
 - 30 product types
 - 59 product/analyte combinations
 - 13 products in retail environments; 17 factory/wholesale
- Apply duplicate method to increase data set on foods of interest
 - A further 16 product/analyte combinations
- Review sampling uncertainties for trends
Results: Sampling/analytical ratios

Most sampling uncertainties are larger than analytical precision

Some evidence of trend with analyte concentration

Trends with concentration
i) Raw results

Sampling RSD increases with decreasing analyte concentration
Trends with concentration

i) log-log relationship

A Horwitz-like function describes sampling SD.

The relationship is very approximate.

Limitations

- Literature surveys reflect interest in sampling
 – Possibly biased towards known problems

- Experimental work chosen to provide a range of examples
 – not a random sample of sampling

- Values differ from fitted line by about ±1 in log_{10}:
 – Approximately one order of magnitude

- Sampling variation need not follow any particular distribution
Practical implementation

- The duplicate method requires a minimum of 8 replicated sampling targets, or 16 sampling exercises
 - Economical only when many more increments are normally taken and measured separately

- Most useful when developing or comparing proposed sampling strategies in practice?

Conclusions

- Primary sampling from the bulk contributes to the uncertainty when the measurand is defined as a property of the bulk material
- Relatively economical empirical approaches to estimating sampling uncertainty are available
- Sampling uncertainties are often considerably larger than analytical uncertainty
- Available data suggest that sampling standard deviation can be predicted to approximately an order of magnitude
Acknowledgements

- UK Food Standards Agency
 Supported the research reported here

- UK National Measurement office
 International programme